Ocular Landers Wide Field & Equatorial II Vitrectomy Lenses

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Image Mag</th>
<th>Diopter</th>
<th>Static FOV</th>
<th>Dynamic FOV</th>
<th>Lens Height</th>
<th>Designed with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLIV-WF</td>
<td>0.38x</td>
<td>155</td>
<td>130°</td>
<td>146°</td>
<td>11.8mm</td>
<td>Maurice B. Landers, III, M.D.</td>
</tr>
<tr>
<td>OLIV-EQ-2</td>
<td>0.65x</td>
<td>91</td>
<td>101°</td>
<td>131°</td>
<td>14.4mm</td>
<td>Chapel Hill, NC</td>
</tr>
</tbody>
</table>

**Lens Design - Wide Field**

- The *Landers Wide Field Vitrectomy Lens* is a two-piece lens designed for clinical situations where autoclaving is the primary method used for sterilization.
- Excellent for panoramic viewing of the far peripheral retina and laser photocoagulation when managing a peripheral retinal tear or giant retinal tear.
- Its wide field of view and low magnification make it particularly useful during fluid-gas exchanges.
- Excellent lens for use with media opacities such as cataracts and cloudy corneas, and works well through a small pupil.
- It is the lens of choice for videotaping important procedures.

**Lens Design - Equatorial II**

- The *Landers Equatorial II Vitrectomy Lens* is a two-piece lens designed for clinical situations where autoclaving is the primary method used for sterilization.
- It is excellent for delicate membrane peeling around the optic nerve and off of the major vascular arcades.
- It also provides an excellent image for delicate work around the macula such as macular hole surgery or peeling of epiretinal membranes from the macula.

**Technique**

- After sterilization, the lens should be assembled, by screwing the two components together on a sterile field.
- The lens may be held on the eye by an assistant using the Landers Lens Handle (OLIV-H) or by suturing one of the Landers Lens Rings to the sclera.
- After a suitable wetting agent is placed on the cornea, the lens is placed on the cornea.
- Many surgeons do not use an inverted image contact lens until the anterior third of the vitreous has been removed and a deeper image of the vitreous cannot be obtained with normal microscope observation.
- Turn off the coaxial and oblique illumination of the microscope, since this may lead to reflections from the contact lens surfaces. Check the positions of instruments repeatedly before and during the operation, as it is very difficult to recognize the patient’s crystalline lens through a contact lens.
- In order to focus the microscope, set it to its lowest magnification and then raise the microscope head away from the patient’s eye. It is suggested that one work at the lowest magnification. Most surgeons reduce magnification after they become familiar with the IVS so they may achieve more field of view.
- Be sure the lens is seated well on the cornea. If the assistant has a poor image and you find the image good (or vice versa), it is possible only one observation beam path of the microscope is receiving and transmitting a good image. Slightly shifting the lens will correct the problem.
- You can bring the pars plana into view by tilting the contact lens a little or by shifting it horizontally. Some lenses possess large depth of field. The concavity of the fundus then appears slightly flattened, especially toward the periphery. It is also possible that the anterior parts of intraocular instruments will at first appear somewhat thicker and slight bent or curved.
- Keep endo-illumination as far as possible from the retina and increase illumination at its tip. This utilizes the wide-angle effect of the Wide Field Lens to its fullest. Light intensity at the retina will be somewhat reduced due to the distance from the retina.
- Fluid/gas exchanges, fluid/silicone exchanges and gas/silicone exchanges can be easily be optically monitored even in phakic eye with the Wide Field Lens.
WARNING
Please adhere to the following instructions for the cleaning and sterilization of Ocular Landers Wide Field and Equatorial II Vitrectomy Lenses. Ocular Instruments Inc. will not be responsible for damage caused by use of alternative cleaning and sterilization methods.

Cleaning

Rinse: Immediately upon removal from patient's eye, thoroughly rinse in cool or tepid water.

Wash: Disassemble the lens by unscrewing the two halves of the lens in a counterclockwise motion (Figure 1). Wash each half of the lens with mild soap and water so that each element is free of mucous, sebaceous deposits, or other debris.

Caution
If fluid/gas exchange has occurred, wipe lens with alcohol to remove any trace of oil present. If lens is not promptly and properly cleaned, permanent damage may result.

Rinse: Rinse the elements thoroughly, then dry. When placing the elements on a surface to dry, always lay the elements as shown in (Figure 2) to avoid scratching.

Then: Proceed with sterilization instructions.

Sterilization - Autoclave

Prep: Place the two halves of the disassembled lens on their sides in sterilization case as shown in (Figure 3).

Process:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>270°F (134°C)</td>
<td>10 minutes minimum</td>
</tr>
</tbody>
</table>

Caution
Use only distilled water in the steam sterilizer. If not distilled, mineral deposits from hard water (steam) will leave a cloudy film on the lens. The deposit can only be removed by regrinding and re-polishing the lens and repair costs approximate that of a new lens.

Important Note!
Moisture inside the lens may cause fogging of the lens during use. To avoid such fogging dry the internal surfaces of both halves of the lens after autoclaving and allow them to cool to room temperature prior to assembling.

Store: Place in a biological barrier peel pouch to ensure sterility after the process.

Sterilization - ETO

Minimum Time | Temperature | Aeration Time
--------------|-------------|---------------
1 hour        | 130°F (54°C) | 12 hours

Sterilization - Steris System 1

Follow Manufacturer's Instructions.

Sterilization - Sterrad

Follow manufacturer’s instructions.

NOTE
Discoloration of the lens cone may occur using Sterrad. Optical Function will not be changed.

Sterilization for Autoclavable Lens Cleaning Cloth (OLCCA)

Flash autoclave (unwrapped) at a minimum of 270°F (134°C) for a minimum of 10 minutes.

For information on compatibility with alternative product care methods, contact Customer Service.